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Abstract

Eukaryotic DNA is packaged into nucleosomes, the basic repeating unit of chromatin.

Consisting of approximately 146 base pairs wrapped around a core protein complex,

nucleosomes have been shown to regulate gene expression both positively and neg-

atively. Conventional methods to identify nucleosome positions are limited by the

relatively small amount of DNA that can be assayed in one experiment. We have

utilized a microarray-based technique that simultaneously measures the positions of

thousands of nucleosomes across multiple genes. To facilitate the analysis of the mi-

croarray data, we developed a hidden Markov model (HMM) as an objective way to

determine nucleosome positioning, thereby automatically and systematically process-

ing DNA hybridization data on a genomic scale. I improved the HMM by incorpo-

rating the ability to simultaneously process data from multiple replicates, to consider

the effects of cross-hybridization, and to ignore unusable data from poorly-hybridized

microarray spots. After developing a graphical user interface for visualizing nucleo-

some positions, I found wide variations in nucleosome density. There was a significant

difference in nucleosome density between gene-coding and intergenic regions. Though

our preliminary results did not show significant correlation between transcription level

and nucleosome density on promoter regions, exploration and quantification in this

area is now possible.



1 Introduction

In eukaryotic cells, DNA needs to be packaged mainly to control the availability of

genes for transcription and to prevent entanglement of its long strands. Nuclear DNA

is packaged with various proteins to form chromatin. Chromatin structure is based

on repeating units of the nucleosome, which consists of an eight-histone-molecule

complex (containing two units each of H2A, H2B, H3, and H4) and approximately

146 DNA base pairs wrapped around it [1]. Whereas the length of the DNA in

nucleosomes is believed to be fairly consistent, the linker DNA between consecutive

nucleosomes can vary in length. Short linkers are typically associated with extremely

compact chromatin structure, and long linkers give the appearance of “beads on

a string” under electron microscopy (nucleosomes constitute the beads and linkers

constitute the string) (Figure 1) [2]. Nucleosome-bound DNA can be further folded

into higher-order compaction known as the 30-nm fiber, in which the nucleosomes

and linkers are most likely folded in a zig-zag conformation [3, 4].

By affecting the positions of nucleosomes over regulatory elements in a promoter,

chromatin structure plays an important role in regulating transcription. Nucleosome

remodeling, the modification of nucleosome positions, appears to be a direct conse-

quence of recruiting and assembling the holoenzyme required for transcription [5].

When bound to promoter regions, nucleosomes have been shown to prevent the ini-

tiation of transcription by bacterial and eukaryotic RNA polymerases through steric

hindrance, in vivo [6] and in vitro [7, 8]. Nucleosomes are also capable of inducing

gene expression by shifting their positions to allow the assembly of molecules nec-

essary for transcription. For example, a change in nucleosome position is required

for transcriptional activation of the human IFN-β gene in HeLa cells in response

to viral infection. A nucleosome blocking the core promoter must slide to a down-

stream position, demonstrating the importance of temporal and spatial configuration

of nucleosomes [9].
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Traditional analysis of nucleosome positioning consists mainly of DNA footprint-

ing with micrococcal nuclease (Figure 1), followed by Southern blots [10]. This tech-

nique is limited to measuring the positions of two or three nucleosomes at a time,

usually in a single promoter region. Earlier global studies of chromatin structure

were limited to low-resolution analysis of histone modification and histone subunit

composition [11, 12, 13]. However, using an oligonucleotide microarray-based method

[14, 15], we have recently developed a technique to identify the positions of several

thousand nucleosomes in a single experiment (Figure 2) with a precision of about

10-20 base pairs. Our method allowed us to examine the structure and function of

chromatin on a genomic scale.

The nucleosome microarray consists of short oligonucleotides designed to have

overlapping sequences that corresponded to DNA regions of interest. DNA isolated

from mononucleosomes was tagged with fluorophores and hybridized to the microar-

ray. A scanned image identified fluorescent spots where mononucleosomal DNA hy-

bridized to the oligonucleotides, which were then mapped to precise locations on the

genome. Labeled genomic DNA was also hybridized to the microarray as a control

to identify base-line levels of fluorescence.

We developed our method of nucleosome analysis using Saccharomyces cerevisiae,

commonly known as baker’s or budding yeast, as it is one of the best-characterized

and simplest of eukaryotic organisms. In S. cerevisiae, chromatin remodeling occurs

during the activation of the MFA2 gene, specific to haploid mating type a cells [10], the

SUC2 gene encoding invertase, required for growth on sucrose [16, 17], and the PHO5

gene, the structural gene for a highly regulated acid phosphatase [18, 19, 20, 21].

In our initial work using this microarray, we tested our method on the promoter

regions of the MFA2, SUC2, and PHO5 genes. DNA oligonucleotides with lengths

of forty, fifty, and sixty nucleotides were tiled every twenty base pairs. We deter-

mined the optimal oligonucleotide length to be fifty nucleotides, which allowed us to
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detect artificial linkers as short as seven base pairs. To distinguish between nucleo-

somes and linkers on the promoter regions of these genes, it was possible by visual

inspection to set a threshold that separated the hybridization values of nucleosomes

from those of linkers. On a genomic scale, however, the much larger amounts of data

made it impractical to survey all the hybridization values manually. In order to auto-

matically and systematically process the hybridization data, we needed a method to

objectively determine the nucleosome/linker boundaries, thereby filtering out noisy

artifacts. Variation between replicate experiments, within a single microarray chip,

and in oligonucleotide-specific characteristics, such as cross-hybridization potential

and GC content, could potentially introduce noise into the data.

To this end, I have developed a hidden Markov model (HMM) which accounts

for the relatively static length of nucleosome-protected DNA, variability of linker

lengths, the noisiness of the data, potential cross-hybridization artifacts, and data

from biological and technical replicates. This model was first used to infer nucleosome

positions on chromosome III and 233 genes of interest, including 100 genes from

chromosomes II, XIV, and XVI, and 100 genes regulated by the cell cycle, the Swi/Snf

chromatin remodeling complex, histone depletion, and histone tail modification.

I first determined that there exist very dense regions of nucleosomes, with ex-

tremely short linkers, as well as very sparse regions of nucleosomes. In addition, I

also found that nucleosome density is higher in gene-coding regions than in intergenic

regions, a result that Nagy et al. have recently discovered by a different technique

[22].
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2 Methods

2.1 Experimental

The methods described in this section were carried out by members of the Oliver

Rando laboratory at the Bauer Center for Genomics Research.

2.1.1 High Throughput Analysis of Nucleosome Positions

Yeast cells were grown to mid-logarithmic phase. Their nuclei were treated with

formaldehyde to cross-link DNA to nucleosomes [23]. The DNA was then digested

with micrococcal nuclease, which destroyed linkers (Figure 1), and mononucleosomal

DNA was isolated through gel electrophoresis [23]. DNA was released from nucle-

osomes and labeled with Cy5, a red fluorescent dye marker. Genomic (undigested)

DNA was labeled with Cy3, a green fluorescent dye marker. These probes were mixed

and hybridized to a microarray consisting of fifty-mer oligonucleotides. The oligonu-

cleotides were designed to have overlapping sequences that corresponded to the DNA

of interest: chromosome III and 233 genes from other chromosomes, including those

that were regulated by the cell cycle, Swi/Snf chromatin remodeling complex, histone

depletion, and histone tail modification. Chromosome III, the shortest chromosome

in S. cerevisiae, was tiled in its entirety. For each of the 233 other genes, 900 base

pairs of upstream, non-coding sequence and 100 base pairs of 5′ coding sequence were

tiled (Figure 2).

The overlap between consecutive oligonucleotides was constructed such that each

oligonucleotide was offset from the next by twenty nucleotides. The hybridization

value, or log ratio, for each oligonucleotide was calculated as the base-two logarithm

of the Cy5 channel divided by the Cy3 channel,

log ratio = log2

Cy5

Cy3
= log2

nucleosomal channel

genomic channel
= log2

N

G
(1)
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where N represents hybridization by nucleosomal DNA and G represents hybridiza-

tion by genomic DNA. Thus, nucleosomal oligonucleotides produced higher log ratios,

while linkers produced lower log ratios.

2.1.2 Artificial Nucleosomes

To aid in normalization, “artificial nucleosome” data was produced by hybridizing

PCR-amplified sequences of DNA to our nucleosome microarray. Chromosome III

was partitioned into non-overlapping contiguous sequences with an average length of

about 6,000 base pairs per segment. These sequences were numbered and sorted into

“even” and “odd” sets. An “even” experiment denotes one where only the even set

of sequences were PCR-amplified, and an “odd” experiment denotes one where only

the odd set of sequences were PCR-amplified. Several even and odd replicates were

used in supervised learning to test our model.

The microarray method described in Section 2.1.1 was utilized, except that an

equal amount of genomic DNA was also hybridized in the Cy5 channel. Similar to

Equation 1, the hybridization value for each oligonucleotide in the “artificial nucleo-

some” experiments was calculated as

log ratio = log2

Cy5

Cy3
= log2

nucleosomal channel

genomic channel
= log2

N + G

G
(2)

where N represents hybridization by nucleosomal DNA and G represents hybridiza-

tion by genomic DNA. We had found that the addition of genomic DNA in the

nucleosomal channel was useful in reducing the dynamic range of the microarray out-

put. Since N could theoretically vary from 0 in the absence of a nucleosome to Nmax

in the presence of one, the last expression of Equation 1 could vary from log2 0 = −∞

to log2
Nmax

G
, whereas the last expression of Equation 2 could vary from log2

G

G
= 0 to

log2
Nmax+G

G
.
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2.2 Computational

2.2.1 Normalization

Our microarray data was normalized to minimize variation in hybridization values

among replicate experiments. The data was also normalized within the microarray

chip of each experiment, as oligonucleotides near the edge of the chip might not be as

protected by the coverslip, thereby becoming exposed to humidity and other factors in

the environment. I performed preliminary normalization by linear regression, allowing

individual experiments, blocks, and local regions to contribute a linear term to the

hybridization values. Subsequently, Dr. Guocheng Yuan, a postdoctoral fellow in

our laboratory, performed statistical analyses and normalized the data by rescaling

followed by linear regression.

2.2.2 Cross Hybridization

While gene expression arrays are typically designed with oligonucleotides selected to

minimize cross-hybridization with the rest of the genome [24, 25], cross-hybridization

could not be avoided in our microarrays because the oligonucleotides were tiled ac-

cording to of the actual DNA sequence of our regions of interest. A cross-hybridizing

oligonucleotide will bind to many locations on the genome, leading to an increase in

G in Equations 1 and 2. When a nucleosome is present, N À G, and an increase

in G will cause
(

N

G

)

to decrease and
(

N+G

G

)

to approach 1 from above. Thus, cross-

hybridization was expected to decrease the log ratio in both our real nucleosome

and “artificial nucleosome” microarrays. I estimated the cross-hybridization poten-

tial of an oligonucleotide in several ways, using WU-BLAST 2.0, a search engine for

nucleotide homologies, on a Linux 2.4 cluster.

First, I found all BLAST matches between each oligonucleotide and the yeast

genome. I filtered for the hits with at least 60% sequence match. The percentages of
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sequence match for each potential target were added.

Second, I identified sites on the genome that potentially cross-hybridize to each

oligonucleotide. The ratios of predicted ∆G values for cross-hybridizing and non-

cross-hybridizing matches were calculated from estimated nearest-neighbor thermo-

dynamic parameters [26, 27, 28, 29, 30, 31]. Because the published thermodynamic

parameters are limited to dinucleotide pairs with zero or one mismatch, the ∆G val-

ues of duplexes with gaps or more than one consecutive mismatch were estimated by

the lowest ∆G of duplex subsequences with no more than one consecutive mismatch

or by the ∆G of the whole duplex without considering contributions from gaps or

consecutive mismatches.

Third, cross-hybridization potential was estimated by

XHYB =
k

∑

i=1

exp

(

−
∆G − ∆G′

i

RT

)

(3)

XHYB is an abbreviation for cross-hybridization potential, ∆G is the free energy

change for non-cross-hybridizing duplex formation, ∆G′

i
are the free energy changes

for cross-hybridizing duplex formation, k is the number of potentially cross-hybridizing

matches returned by BLAST, R = 1.9872156×103 kcal/(mol · K) is the gas constant,

and T = 310 K is the temperature at which the nearest-neighbor thermodynamic

parameters were derived.

Fourth, for each oligonucleotide, I calculated the number of BLAST matches with

at least n matching base pairs, using threshold levels 1 ≤ n ≤ 50. Since I was

trying to model two distinct output distributions, one for nucleosomes and one for

linkers, I divided the oligonucleotides in our “artificial nucleosome” microarrays into

the “artificial nucleosome” oligonucleotides, which hybridized to the PCR-amplified

sequences of DNA, and the “artificial linker” oligonucleotides, which only hybridized

to genomic DNA. I mainly considered the former category of oligonucleotides be-
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cause cross-hybridization is most capable of distorting hybridization values when a

nucleosome is present. Because the majority of these oligonucleotides did not have

BLAST matches with cross-hybridizing sites on the genome, I partitioned them into

two groups, (1) those which had no cross-hybridizing BLAST matches with at least

n matching base pairs and (2) those which had at least one such match. (For ex-

ample, at n = 32, of the 4998 oligonucleotides that were hybridized to “artificial

nucleosomes,” 3924 had no cross-hybridizing BLAST matches with at least n match-

ing base pairs, 681 had exactly one BLAST match, and 393 had more than one.)

For each oligonucleotide, I calculated the mean and standard deviation of its hy-

bridization values across eight replicates of the “artificial nucleosome” data. Using

the Wilcoxon rank-sum test, a non-parametric test that makes no assumptions of

the shapes of the distributions, I tested the hypothesis that the means and standard

deviations were drawn from the same distribution (Figure 3). I only tested the hy-

pothesis for the means of the oligonucleotide hybridization values across replicates

because we were more concerned with how cross-hybridization potential affects the

mean output distribution. The Wilcoxon rank-sum test revealed a local optimum in

confidence level, or p-value, at a threshold of n = 32 (Figure 4). The estimation of

cross-hybridization was simplified to a Boolean value, such that any oligonucleotide

with cross-hybridizing BLAST matches with at least 32 matching base pairs was

considered to have cross-hybridization potential.

2.2.3 Hidden Markov Model

To objectively determine nucleosome/linker boundaries, we implemented a hidden

Markov model (HMM). HMMs were originally developed for speech recognition [32]

and have been applied to various problems in biology [33] such as finding genes in

bacterial genomes [34] and nucleosome positioning signals in human intron and exon

sequences [35]. An HMM makes three basic assumptions about the system at hand.
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First, it assumes that the system passes through a sequence of hidden or unobservable

states. However, at each point in the sequence, we have one or more observations that

reflect upon the current state of the system in some way. The collection of observations

and hidden states at each point in the sequence is called a slice. Second, the discrete

or continuous observation at any node in a slice is conditionally independent of all

other nodes given that the values of its parent nodes, the nodes that directly affect

it, are known. Third, an HMM assumes that the state of the system is independent

of history, in that the future states of the system are conditionally independent of all

past states and observations given that the current hidden state is known. This is

the Markov assumption and can be restated [36] as “The future is independent of the

past given the present.”

Our original implementation of the HMM sufficed for our preliminary work and

was able to infer nucleosome positions that matched those published in the literature

for regions such as the MFA2 promoter (Figure 5). This HMM separated the hy-

bridization values from the nucleosome microarrays into two categories, nucleosome-

generated and linker-generated, represented by red and green, respectively (Figure

6a). The two categories were modeled as two separate Gaussian probability distri-

butions (Figure 6b). The hidden state transition graph (Figure 6c) incorporated the

fact that it takes approximately seven consecutively-tiled oligonucleotides to cover a

nucleosome binding site. (The fifty-mer oligonucleotides are tiled every twenty base

pairs, and each nucleosome binding site is 146 base pairs long on average [1].) The

HMM optimized this categorization of oligonucleotides into nucleosomes and linkers

through several passes of the expectation-maximization (E-M) algorithm and finally

inferred the most likely sequence of nucleosome and linker states (Figure 6d) that

matched the hybridization values on our microarray. From another point of view

(Figure 7), the HMM represented the hidden states, nucleosome or linker, in the H

nodes and the observed hybridization values in the O nodes. The arrows represent
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the directed transitions for the hidden states according to the state transition graph,

as well as the causal relationships between hidden states and the output distributions

of the observed hybridization values.

However, our original HMM required further modifications in order to handle the

larger output from genomic-scale nucleosome microarrays. In particular, we needed

to normalize the microarray data prior to HMM analysis, thereby minimizing varia-

tion between different microarray experiments and between blocks on the same mi-

croarray chip. Oligonucleotide-specific biochemical characteristics, particularly cross-

hybridization potential, were also likely to confound the HMM by altering the output

distributions. Thus, I designed and implemented an improved HMM to be used in the

same manner as described above. I augmented the topology of the HMM (Figure 8),

incorporating information about potentially cross-hybridizing oligonucleotides into

the X nodes and accounting for user-flagged, unusable microarray spots (Figure 9) in

the F nodes. The calculation of values for the X nodes is described in Section 2.2.2.

The value of the F node for an oligonucleotide is 1 if the corresponding microarray

spot is unusable; normal spots have a value of 0.

Given an experimental data set, the HMM used the Baum-Welsh algorithm [33]

to estimate the most likely values of seven parameters: µN (mean of nucleosomal

output), µL (mean of linker output), σN (standard deviation of nucleosomal output),

σL (standard deviation of linker output), wN (contribution of cross-hybridization

to nucleosomal output), wL (contribution of cross-hybridization to linker output),

and p (probability of remaining in the linker state). Though cross-hybridization

potential was incorporated into the model, the HMM was free to assign as much

weight to it as suggested by the data. The fitted model was then used to calculate the

probability that a sequence of oligonucleotides on the nucleosome array corresponded

to nucleosome or linker regions. In addition, the Viterbi algorithm allowed the model

to compute the most likely explanation for the observed hybridization values, i.e. the
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most likely sequence of hidden states.

2.2.4 Hardware and Software

Processing of the microarray data was conducted primarily in Matlab on a Mac OS X

platform. The hidden Markov model was implemented using Kevin Murphy’s Bayes

Net Toolbox,1 which includes algorithms such as Baum-Welch and Viterbi, to learn

model parameters from the microarray data, to compute the likelihood of the data,

and to estimate the most likely positions of nucleosomes and linkers to generate the

data. Other software, such as Microsoft Excel and ad hoc Perl and shell scripts, were

also used to handle the data.

3 Results

3.1 Graphical User Interface

I developed an automated method for simultaneously visualizing multiple replicates

of our nucleosome microarray data (Figure 10), including the HMM-inferred nucleo-

some positions and gene-coding regions. The likelihood of a nucleosome’s presence at

any location is visualized by the thickness of a line that follows the mean of nucleo-

somal output and by a graph of the likelihood versus genomic position. In addition,

nucleosome density is shown by a plot of p, the probability of remaining in the linker

state. Higher values of p correspond to sparser nucleosome density and lower values

correspond to denser nucleosome density. Finally, the cross-hybridization potentials

are aligned with each oligonucleotide.

1The Bayes Net Toolbox is available from http://www.ai.mit.edu/~murphyk/Software/BNT/

bnt.html.
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3.2 Oligonucleotide-Specific Characteristics

As described in Section 2.1.2, we produced “artificial nucleosome” data as training

sets from which we hoped to learn the effects of GC content and cross-hybridization

potential on the hybridization values of the nucleosome microarray. For each oligonu-

cleotide, I tabulated the mean and standard deviation of the log ratios across eight

replicates of the “even” experiments. By plotting the means and standard deviations

against the GC content and cross-hybridization potential of each oligonucleotide, I

hoped to estimate the effects of these oligonucleotide-specific characteristics on the

data.

The GC content of a DNA sequence affects its melting temperature and hence

directly influences its binding affinity [25]. However, we were not sure how GC content

would affect the hybridization values, and we hoped to find a correlation by analyzing

the “artificial nucleosome” data. I attempted to correlate GC content with the mean

and standard deviation of the hybridization signal using two common measurements:

the total number of G’s and C’s in each oligonucleotide sequence or the length of

the longest continuous stretch of G’s and C’s in the sequence. We were unable to

detect any correlation through visual inspection or linear regression. Without clear

evidence that GC content affects the hybridization outputs, I made the design choice

to exclude this parameter from the HMM.

Another parameter that is specific to each oligonucleotide is its ability to cross-

hybridize with alternate locations on the genome. Unlike gene expression arrays, tiled

arrays must include all sequences in a certain region of the genome and therefore may

include areas that share homology with other regions of the genome [37]. While

gene expression arrays are designed to minimize cross-hybridization, this source of

false positives is unavoidable in tiled arrays [24, 25]. After testing all the cross-

hybridization estimation methods described in Section 2.2.2, I decided to utilize the

simplified Boolean method as described below. X is set to 1 for all oligonucleotides
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that have a BLAST match with at least 32 perfect base pairs; otherwise, X is set to

0. To learn the contribution of cross-hybridization potential in the real nucleosome

data, I modeled the observed nodes O (Figure 8) as

O = log2

(

Cy5

Cy3

)

∼















N(µN + X · wN , σN ) if H = N1, . . . , N7

N(µL + X · wL, σL) if H = L

where N(µ, σ) is a normal distribution with a mean of µ and a standard deviation

of σ. In addition to the parameters µN , σN , µL, σL, p (Figure 7), my consideration

of cross-hybridization potential introduced two more parameters, wN and wL, which

were optimized in the learning process to produce the best-fit model. We found many

cases where cross-hybridizing oligonucleotides caused decreases in the hybridization

values and were therefore misleading, as they were supposed to indicate the presence

of a nucleosome (Figure 11).

3.3 Hidden Markov Model

The HMM learned the following seven parameters each time it fitted to the data: µN

(mean of nucleosomal output), µL (mean of linker output), σN (standard deviation of

nucleosomal output), σL (standard deviation of linker output), wN (contribution of

cross-hybridization to nucleosomal output), wL (contribution of cross-hybridization to

linker output), and p (probability of remaining in the linker state). Using the HMM

to learn a single model for entire regions of chromosome III proved to be inadequate

because the hybridization values meander unpredictably (Figure 12). This is possibly

due to preferential sites of micrococcal nuclease digestion or technical difficulties with

the microarray. Thus, in order to allow the parameters of the HMM to vary over

different regions of the chromosome, I ran the HMM on the leftmost window of 70

oligonucleotides on chromosome III, learned a set of parameters, and inferred the pos-
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terior nucleosome probabilities (the probabilities of observing a nucleosome at a given

oligonucleotide). The window was shifted to the right by one oligonucleotide, and the

procedure was repeated until the end of chromosome III was reached. Subsequently,

the learned parameters and posterior nucleosome probabilities from these windows

were averaged. I varied the window size from from 20 to 100 oligonucleotides in in-

crements of 10. In small window sizes (≤ 50), there were insufficient hybridization

values from both nucleosome and linker output distributions, and the HMM could

not distinguish between them. Large window sizes (≥ 80) defeated the purpose of

removing the unpredictable trends. Thus, a window size of 70 oligonucleotides was

suitable.

3.4 Biological Relevance

I identified regions on chromosome III where nucleosomes were spaced widely apart

(Figure 13) and other regions where nucleosomes were tightly packed (Figure 14),

showing both extremes of nucleosome density. I also found many intergenic regions

that were devoid of nucleosomes and observed that gene-coding regions typically

have higher nucleosome density than intergenic regions. Histograms of nucleosome

densities on gene-coding and intergenic regions (Figure 15) show distributions that

were nearly separable by a density threshold between 0.4 and 0.5 nucleosomes per 140

base pairs of DNA. Therefore, regions with higher nucleosome density were almost

certain to be open reading frames, while regions with lower nucleosome density were

almost certain to be intergenic regions.

4 Discussion

While searching for a correlation between cross-hybridization potential and hybridiza-

tion values, I experimented with simple linear models, such as taking a count of num-
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ber of BLAST matches between an oligonucleotide and the yeast genome, and more

realistic models that incorporated the free-energy gain of duplex formation. Remark-

ably, I found that if I substituted a temperature that was a thousand times greater

than normal in the free-energy model, the correlation was much more obvious. In

fact, with such an exaggerated temperature, the free-energy contributions basically

became a count of BLAST matches, since the amount of cross-hybridization can be

approximated by Equation 3. An exaggerated temperature caused the argument of

the exponential to approach zero, making each summand close to one, such that

XHYB =
k

∑

i=1

exp

(

−
∆G − ∆G′

i

RT

)

≈

k
∑

i=1

exp(0) =
k

∑

i=1

1 = k

which is the number of BLAST matches above a certain threshold of significance.

This surprising result was somewhat reflected in [37], where their best fit correlation

between free-energy and cross-hybridization potential yielded a temperature that was

seven times normal.

Initially, I had also set out to incorporate both GC content and cross-hybridization

potential into my HMM. The lack of correlation between the former and trends in the

“artificial nucleosome” data was disappointing, but it also simplified the model. The

relationship between GC content and hybridization values may have been too complex

to model from our data, for I was looking for simple, mostly linear relationships

between these oligonucleotide-specific characteristics and the data.

Instead of using a single HMM to model entire chromosomes, I found that training

the HMM on running windows yielded more accurate results. The data was affected

by large-scale trends, evident by the vertical meandering of the hybridization values

for each experiment (Figure 12), implying that the parameters of my HMM should

vary over chromosome position. While a model can theoretically be formulated by

specifying additional parameters to address the variation, this kind of variable HMM
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was not supported by the Bayes Net Toolbox. Thus, to approximate the changes in

parameters over chromosomal position, I trained my HMM on running windows as

described in Section 3.3. I tested different window sizes to optimize the resolution

of the running-windows HMM and found that a window size of 70 oligonucleotides

showed the most reliable identification of nucleosome positions (Figure 12). In addi-

tion, the posterior probability of a nucleosome’s presence on a given oligonucleotide

was obtained by averaging the posterior probabilities for all HMM windows that con-

tained the oligonucleotide, and this average was used as the final determination of

nucleosome positioning.

Using the improved HMM, I examined nucleosome density on a chromosomal

scale. First, I found that some genomic regions contained few nucleosomes (Figure

13) while others were highly packed with nucleosomes (Figure 14). The gene with

relatively few nucleosomes may not be strongly regulated by nucleosome positioning.

In contrast, the regular phasing of nucleosomes along a stretch of DNA may serve

to sterically inhibit transcription. Figure 14 shows a gene-coding region that was

almost completely protected by nucleosomes. This gene is likely to be silenced during

logarithmic growth. Such a dense configuration of nucleosomes may also pack the

DNA into regular chromatin structure. I also found many nucleosome-free intergenic

regions (Figure 10) and verified the observation that gene-coding regions are more

populated with nucleosomes than intergenic regions (Figure 15) [22]. Perhaps the

aggregation of nucleosomes on gene-coding regions serves to better regulate gene

expression, by sterically controlling the progression of transcription machinery.

Lastly, I hoped to correlate nucleosome density on promoter regions to the cor-

responding gene’s transcription level. However, preliminary results have shown little

correlation (Figure 16). Nevertheless, because nucleosomes both induce and repress

genes [6, 7, 8, 9], their presence may be required for both highly- and moderately-

expressed genes.
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5 Future Directions

Our combined microarray-based method and HMM will be able to address questions

regarding what fraction of the genome is found in strongly-positioned nucleosomes and

what fraction lies in nucleosomes that are weakly-positioned in our yeast population.

We expect that there will be some regions corresponding to each extreme. When a

nucleosome is heterogeneously positioned, the next question that must be asked is the

nature of the transitions between the distinct states. In other words, do delocalized

nucleosomes shift back and forth on DNA on the time scale of seconds? Or do multiple

distinct yeast states (e.g. prion states, subtelomeric silencing states, or cell cycle

phases, each of which defines a stable set of nucleosome positions) exist simultaneously

in our experimental population? We expect that there may be examples of the former

[38], but examples of the latter probably exist as well.

With further analyses, we will correlate the movement and position of specific

nucleosomes with changes in expression of the underlying gene. In particular, we

are analyzing the DNA in the nucleosomes to identify binding sites for transcription

factors. We are also looking towards comparing nucleosome positions of yeast in

different cell cycle phases to identify the role of nucleosomes in controlling phase-

specific events.

6 Conclusion

The identification of nucleosome positioning has been a considerable challenge over

the years. While the traditional low-throughput methods have long been known,

they are too tedious to easily expand beyond the scale of promoter regions of indi-

vidual genes. My improved HMM circumvents the problem of scale by automatically

and systematically inferring nucleosome positions from multiple replicates of genomic

nucleosome microarrays.
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Through this objective determination of nucleosome positioning, I have answered

questions about nucleosome density. There were wide variations in nucleosome den-

sity, and there was a significant difference in nucleosome density between gene-coding

and intergenic regions. Though preliminary results did not show significant correla-

tion between transcription level and nucleosome density on promoter regions, explo-

ration and quantification in this area is now possible.
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A Figures

micrococcal nuclease

nucleosomes

mononucleosomes

mononucleosomal DNA

linkers

Figure 1: Preparation of Mononucleosomal DNA Formaldehyde was used to
cross-link DNA to nucleosomes [23]. Linkers were destroyed by micrococcal nuclease
digestion. DNA was dissociated from mononucleosomes and isolated through gel
electrophoresis [23]. Mononucleosomal DNA was hybridized to a tiled microarray in
our high-throughput method.
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Chr III

233 other genes:

50 bp oligonucleotides, tiled every 20 bp

-100 genes from chromosomes II, XIV, XVI
-100 genes regulated by cell cycle, Swi/snf,
 histone depletion, histone tails

mononucleosomal DNA

genomic DNA

Figure 2: Nucleosome Microarray Each spot on our nucleosome microarray cor-
responded to a 50-mer oligonucleotide. The oligonucleotides were tiled with an offset
of 20 base pairs on chromosome III in its entirety and the promoters of 233 other genes.
Cy5-tagged mononucleosomal DNA and Cy3-tagged genomic DNA were hybridized
to the oligonucleotides. The hybridization value, or log ratio, for each oligonucleotide
was calculated as the base-two logarithm of the Cy5 channel divided by the Cy3
channel.
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Figure 3: Means and Standard Deviations of Hybridization Values Across

Replicates Each point represents an oligonucleotide that was hybridized by an “ar-
tificial nucleosome” on our “even” experiments. (a) For each oligonucleotide, the
XHYB pre-score, an initial estimation of cross-hybridization potential, counted the
number of cross-hybridizing BLAST matches with at least n = 32 matching base
pairs and the mean and standard deviation were calculated on the hybridization val-
ues across eight replicates. (b) Because the majority of oligonucleotides did not have
any cross-hybridizing BLAST matches with at least n = 32 matching base pairs,
they were partitioned into two categories. Those which had no cross-hybridizing
BLAST matches with at least n matching base pairs were assigned an XHYB score,
or cross-hybridization potential, of 0, and those which had at least one such match
were assigned an XHYB score of 1. The Wilcoxon rank-sum test was used as a quan-
titative test to differentiate the means of the oligonucleotides with an XHYB score of
0 from those with an XHYB score of 1.
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Figure 4: Estimation of Cross-Hybridization The means of the hybridization
values of “artificial nucleosomes” were calculated to obtain a suitable threshold for the
number of matching nucleotides in the BLAST matches of an oligonucleotide. I tested
the hypothesis that the means of oligonucleotides with an XHYB score of 0 and the
means of oligonucleotides with an XHYB score of 1 came from different distributions.
Shown here are the negative base-10 logarithms of the p-values produced by the
Wilcoxon rank-sum test (y-axis) for thresholds 20 ≤ n ≤ 50 (x-axis). I chose the
local optimum at n = 32 that minimized the p-value and maximized the confidence
level in the hypothesis.
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Figure 5: Nucleosome Positions on the MFA2 Promoter A preliminary ver-
sion of our nucleosome microarray was used to locate nucleosomes on the MFA2

promoter in DNA isolated from BY4741 (MATa) and BY4742 (MATα) strains. The
coordinates on the x-axes indicate positions relative to the MFA2 transcriptional
start codon. Three replicate data sets using strain BY4741 are included to show
the low level of variation among multiple experiments. (a) The base-2 log ratios of
Cy5-labeled mononucleosomal DNA (from haploid strain BY4741 or BY4742 as indi-
cated) to Cy3-labeled yeast genomic DNA (from diploid strain BY4743) are plotted
along nucleotide position. The arrow indicates the position of a nucleosome that is
present only in BY4742 strains. (b) The HMM-inferred nucleosome positions are
represented as dark red bars for nucleosomes and black areas for linker regions. Data
from MATα nucleosome positions, published in [10], are depicted in bright red. (Gray
areas indicate the unavailability of data.) The white arrow indicates the position of
a nucleosome that is present only in BY4742 strains.
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Figure 6: Hidden Markov Model A Hidden Markov Model (HMM) is used to infer
nucleosome positions from hybridization data. The HMM models nucleosomes and
linkers as two distinct probability distributions from which observed hybridization
values are drawn. (a) The hybridization values are plotted along the y-axis, while
the x-axis shows consecutive oligonucleotides mapped to specific locations on the
genome. For illustrative purposes, hybridization values are colored red and green to
indicate that they came from nucleosomes and linkers, respectively. (b) The observed
probability distributions are modeled as Gaussian. The y-axis depicts log ratios while
the x-axis represents probability density. (c) The transitions between all the states
are deterministic, except from the linker state, where p is the probability of remaining
in that state and 1 − p is the probability of entering a nucleosome. A nucleosome
is represented by a sequence of seven nucleosomal hidden states because it takes
approximately seven consecutive oligonucleotides, each offset from the previous by
twenty nucleotides, to cover the ∼146 base pairs wrapped around the nucleosome [1].
(d) The Viterbi algorithm infers the most likely sequence of hidden states that could
have generated the observed hybridization signals. Each occurrence of the sequence,
N1, . . . , N7, represents a nucleosome.
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Figure 7: Original HMM Topology Circles denote continuous nodes, squares
denote discrete nodes, clear means observed, and shaded means hidden. Each hidden
node H assumes a hidden state that represents the type of DNA at the corresponding
oligonucleotide, either nucleosome or linker. Each observed node O represents the
normalized hybridization value and is modeled as a Gaussian probability distribution
with mean and standard deviation of µN and σN for nucleosomes and µL and σL for
linkers. The hidden states make transitions from one slice to the next according to the
transition graph. The arrows represent causal relationships in which the probability
distribution of a node is independent of all other nodes given the values of its parent
nodes, i.e. the nodes with arrows pointing directly to it.
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Figure 8: Improved HMM Topology Circles denote continuous nodes, squares
denote discrete nodes, clear means observed, and shaded means hidden. This topol-
ogy incorporates information about potential cross-hybridization and faulty microar-
ray spots. Each hidden node H assumes a hidden state that represents the type of
DNA at the corresponding oligonucleotide, either nucleosome or linker. Each observed
node O represents the normalized hybridization value and is modeled as a Gaussian
probability distribution with mean and standard deviation of µN and σN for nucleo-
somes and µL and σL for linkers. Each cross-hybridization node X is a Boolean value
indicating whether the corresponding oligonucleotide is likely to cross-hybridize to
alternate regions on the genome. If X is 1, then a weight, wN for nucleosomes and
wL for linkers, is added to the mean of the log ratio distribution. Each flag node F
is also a Boolean value indicating whether a particular observation has been flagged
as an unusable measurement.
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Figure 9: Flagged Spots on the Microarray This is a block from the nucleo-
some microarray. As indicated, some spots on our nucleosome microarray were not
hybridized cleanly, and the corresponding oligonucleotides were flagged and ignored
in the improved HMM, using the F nodes.
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Figure 10: Graphical User Interface This figure shows the nucleosome positions
inferred by the improved HMM on an internal region on chromosome III in mid-
logarithmic phase MATα yeast cells. Top panel, the blue, green, and cyan lines
represent data from three replicate experiments. The vertical thickness of the red
line varies with the likelihood of a nucleosome’s presence at each coordinate, and the
vertical position of the red line varies with µN . Discontinuities in the data result from
the omission of flagged oligonucleotides from the HMM’s consideration. The magenta
bar indicates the presence of gene-coding regions. Second panel, the likelihood of a
nucleosome’s presence is depicted. Third panel, the probability p of remaining in the
linker state is depicted. Bottom panel, the Boolean value of the cross-hybridization
node, X, is displayed. The x-axes show genomic coordinates in 105 base pairs.
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Figure 11: Inclusion of Cross-Hybridization Data Axes and plots are as de-
scribed in Figure 10. Because we introduce genomic DNA into the genomic channel of
the nucleosome microarrays, cross-hybridizing oligonucleotides are expected to cause
decreases in the log ratio measurement. The inclusion of the cross-hybridization nodes
X allows the improved HMM to discern a nucleosome even when cross-hybridization
confounds the hybridization values, as shown by the arrows in the figure. In this
region, cross-hybridization potential decreases the mean log ratio output by about
0.11 in the nucleosome state.
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Figure 12: Windowed HMMs Axes and plots are as described in the top panel of
Figure 10. There was an observable trend in the data, visible by following the vertical
position of the red line, perhaps caused by preferential micrococcal nuclease digestion
or technical difficulties with the microarray. The improved HMM was trained on
running windows across this region to allow its parameters to vary, shown here with
window sizes of 50, 70, and 100 oligonucleotides. Too small a window would deprive
the HMM of enough data from both output distributions for it to distinguish them,
while too large a window prevents it from following the overall trend. The differ-
ences in window sizes is most evident between coordinates 1.07× 105 and 1.08× 105,
where µN seems to almost follow the mean of a linker region in the top panel. After
looking at the trend-following capability of my HMM on window sizes from 20 to 100
oligonucleotides in increments of 10, I chose a window size of 70 oligonucleotides.
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Figure 13: Sparsely-Populated Region Axes and plots are as described in Figure
10. Some regions of genomic DNA are sparsely-populated with nucleosomes and are
characterized by long linkers and high, near-1 probabilities that the hidden state
remains in the linker state, as shown in the third panel.
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Figure 14: Densely-Populated Region Axes and plots are as described in Figure
10. Other regions of genomic DNA are densely-populated with nucleosomes and
are characterized by phased, or tightly-packed, nucleosomes, short linkers, and low
probabilities that the hidden state remains in the linker state, as shown in the third
panel.
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Figure 15: Nucleosome Density on Gene-Coding and Intergenic Regions

Gene-coding regions tend to be densely populated by nucleosomes while intergenic
regions tend to be sparsely populated, as recently shown by physical fractionation of
chromatin, a completely different technique [22].
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Figure 16: Nucleosome Density vs. Transcription Level Preliminary results
do not show a significant correlation between the nucleosome density of a gene-coding
region and its transcription level.
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